Role of phospholipase C, protein kinase C, and calcium in VEGF-induced venular hyperpermeability.
نویسندگان
چکیده
We previously demonstrated that vascular endothelial growth factor (VEGF)-elicited increase in the permeability of coronary venules was blocked by the nitric oxide (NO) synthase inhibitor NG-monomethyl-L-arginine (L-NMMA). The aim of this study was to delineate in more detail the signaling pathways upstream from NO production in VEGF-induced venular hyperpermeability. The apparent permeability coefficient of albumin (Pa) and endothelial cytosolic Ca2+ concentration ([Ca2+]i) were measured in intact perfused porcine coronary venules using fluorescence microscopy. VEGF (10(-10) M) induced a two- to threefold increase in Pa, which was blocked by a monoclonal antibody directed against the VEGF receptor Flk-1/KDR, the phospholipase C (PLC) antagonist U-73122, or the protein kinase C (PKC) antagonist bisindolylmaleimide (BIM). In 12 venules that displayed the [Ca2+]i response to bradykinin (10(-6) M) and ionomycin (10(-6) M), only 4 vessels responded to VEGF with a transient increase in [Ca2+]i. Furthermore, Western blot analysis of cultured human umbilical vein endothelial cells showed that VEGF increased tyrosine phosphorylation of PLC-gamma and serine phosphorylation of endothelial constitutive NO synthase (ecNOS). The hyperphosphorylation of PLC-gamma was greatly attenuated by the KDR receptor antibody and U-73122, but not by BIM or L-NMMA. In contrast, U-73122 and BIM were able to inhibit VEGF-elicited serine phosphorylation of ecNOS. The results suggest that VEGF induces venular hyperpermeability through a KDR receptor-mediated activation of PLC. In turn, ecNOS is activated by PLC-mediated PKC and/or cytosolic Ca2+ elevation stimulation.
منابع مشابه
Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملInteraction of PKC and NOS in signal transduction of microvascular hyperpermeability.
Our previous studies have shown that inflammatory mediators increase microvascular permeability through a phospholipase C-nitric oxide synthase (NOS)-guanylate cyclase cascade. The aim of this study is to delineate in more detail the signaling pathway leading to microvascular hyperpermeability. Endothelial cytosolic calcium and the apparent permeability coefficient of albumin ( P a) were measur...
متن کاملEffects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways
Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...
متن کاملGIT1 mediates VEGF-induced podosome formation in endothelial cells: critical role for PLCgamma.
OBJECTIVE We and others showed that tyrosine kinase receptors (TKRs) such as the epidermal growth factor receptor stimulate G protein-coupled receptor (GPCR) kinase-interacting protein 1 (GIT1) phosphorylation via c-Src, which is required for phospholipase C-gamma (PLCgamma) activation, indicating that GIT1 participates in TKR signaling. VEGF is the most important TKR in endothelial cells (ECs)...
متن کاملVascular permeability factor/vascular endothelial growth factor-mediated signaling in mouse mesentery vascular endothelium.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is a multifunctional cytokine and growth factor that has important roles in both pathological and physiological angiogenesis. VPF/VEGF induces vascular hyperpermeability, cell division, and other activities by interacting with two specific receptor tyrosine kinases, KDR/Flk-1 and Flt-1, that are selectively expressed on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 276 2 Pt 2 شماره
صفحات -
تاریخ انتشار 1999